16,376 research outputs found

    Context dependence of the event-related brain potential associated with reward and punishment

    No full text
    The error-related negativity (ERN) is an event-related brain potential elicited by error commission and by presentation of feedback stimuli indicating incorrect performance. In this study, the authors report two experiments in which participants tried to learn to select between response options by trial and error, using feedback stimuli indicating monetary gains and losses. The results demonstrate that the amplitude of the ERN is determined by the value of the eliciting outcome relative to the range of outcomes possible, rather than by the objective value of the outcome. This result is discussed in terms of a recent theory that holds that the ERN reflects a reward prediction error signal associated with a neural system for reinforcement learning

    ALICE TPC control and read-out system

    Get PDF
    ALICE is a dedicated heavy-ion experiment at CERN LHC aiming to study the properties of the quark–gluon plasma. A lead– lead collision might produce several ten thousand new particles. Detailed study of the event requires precise measurements of the particle tracks. A 90 m3 Time Projection Chamber (TPC) with more than 500 000 read-out pads was built as the main central barrel tracker. Collisions can be recorded at a rate of up to about 1 kHz. The front-end electronics, designed from FPGAs and custom ASICs, performs shaping, amplification, digitisation and digital filtering of the signals. The data is forwarded to DAQ via 216 1.25 Gb/s fibre-optical links. Configuration, control and monitoring is done by an embedded Linux system on the front-end electronics. First results on the performance of the front-end electronics and the distributed detector control system are presented

    Latest Results from the NA61/SHINE Experiment

    Get PDF
    The NA61/SHINE experiment at the CERN Super Proton Synchrotron is pursuing a rich programme on strong interactions, which covers the study of the onset of deconfinement and aims to discover the critical point of strongly interacting matter by performing an energy and system-size scan over the full CERN SPS beam momentum range. So far the scans of p+p, p+Pb, Be+Be, and Ar+Sc interactions have been completed, samples of Pb+Pb data at three energies have already been taken and Xe+La collisions will be registered this year. Results from the different reactions are now emerging, in particular the energy dependence of hadron spectra and yields as well as fluctuations. This contribution presents status and preliminary results from this effort, as well as an outlook for future extensions of the strong interactions programme

    A Semiconductor Nanowire-Based Superconducting Qubit

    Full text link
    We introduce a hybrid qubit based on a semiconductor nanowire with an epitaxially grown superconductor layer. Josephson energy of the transmon-like device ("gatemon") is controlled by an electrostatic gate that depletes carriers in a semiconducting weak link region. Strong coupling to an on-chip microwave cavity and coherent qubit control via gate voltage pulses is demonstrated, yielding reasonably long relaxation times (0.8 {\mu}s) and dephasing times (1 {\mu}s), exceeding gate operation times by two orders of magnitude, in these first-generation devices. Because qubit control relies on voltages rather than fluxes, dissipation in resistive control lines is reduced, screening reduces crosstalk, and the absence of flux control allows operation in a magnetic field, relevant for topological quantum information

    Structure-activity relationship of immunostimulatory effects of phthalates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some chemicals, including some phthalate plasticizers, have been shown to have an adjuvant effect in mice. However, an adjuvant effect, defined as an inherent ability to stimulate the humoral immune response, was only observed after exposure to a limited number of the phthalates. An adjuvant effect may be due to the structure or physicochemical characteristics of the molecule. The scope of this study was to investigate which molecular characteristics that determine the observed adjuvant effect of the most widely used phthalate plasticizer, the di-(2-ethylhexyl) phthalate (DEHP), which is documented as having a strong adjuvant effect. To do so, a series of nine lipophilic compounds with structural and physicochemical relations to DEHP were investigated.</p> <p>Results</p> <p>Adjuvant effect of phthalates and related compounds were restricted to the IgG1 antibody formation. No effect was seen on IgE. It appears that lipophilicity plays a crucial role, but lipophilicity does not <it>per se </it>cause an adjuvant effect. In addition to lipophilicity, a phthalate must also possess specific stereochemical characteristics in order for it to have adjuvant effect.</p> <p>Conclusion</p> <p>The adjuvant effect of phthalates are highly influenced by both stereochemical and physico-chemical properties. This knowledge may be used in the rational development of plasticizers without adjuvant effect as well as in the design of new immunological adjuvants.</p

    Desensitization of ovalbumin-sensitized mice by repeated co-administrations of di-(2-ethylhexyl) phthalate and ovalbumin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The plasticizer di-(2-ethylhexyl) phthalate (DEHP) has been shown to stimulate a non-allergy related immune response with increased levels of IgG1 and IgG2a, but not IgE, after co-administration with the model allergen ovalbumin (OVA) in mice. In mice, decreased IgG1 and increased IgG2a have been associated with the development of mucosal tolerance towards inhaled allergens. As DEHP selectively promote formations of IgG1 and IgG2a without stimulating the IgE response, it was hypothesized that DEHP may suppress an established IgE mediated allergic response. Mice pre-sensitised to OVA were repeatedly co-exposed to DEHP and OVA and the effects were evaluated on the levels of OVA-specific antibodies, <it>ex vivo </it>cytokine levels and the degree of lung inflammation after challenge with an OVA aerosol.</p> <p>Findings</p> <p>Compared to the OVA-sensitised control mice, multiple co-exposures to DEHP+OVA reduced the IgG1 level and reduced the IgE/IgG2a ratio. This suggests that DEHP may attenuate allergic sensitisation, as the IgE/IgG2a ratio has been shown to correlate with the degree of anaphylaxis. Nevertheless, no effect of DEHP exposures was seen on inflammatory cells in bronchoalveolar lavage fluid and on cytokine levels in spleen cell culture.</p> <p>Conclusion</p> <p>Data from humane and murine studies suggest that DEHP may attenuate the allergic response. More studies are necessary in order to assess the size of this effect and to rule out the underlying mechanism.</p

    Time lower bounds for nonadaptive turnstile streaming algorithms

    Full text link
    We say a turnstile streaming algorithm is "non-adaptive" if, during updates, the memory cells written and read depend only on the index being updated and random coins tossed at the beginning of the stream (and not on the memory contents of the algorithm). Memory cells read during queries may be decided upon adaptively. All known turnstile streaming algorithms in the literature are non-adaptive. We prove the first non-trivial update time lower bounds for both randomized and deterministic turnstile streaming algorithms, which hold when the algorithms are non-adaptive. While there has been abundant success in proving space lower bounds, there have been no non-trivial update time lower bounds in the turnstile model. Our lower bounds hold against classically studied problems such as heavy hitters, point query, entropy estimation, and moment estimation. In some cases of deterministic algorithms, our lower bounds nearly match known upper bounds
    • …
    corecore